Symmetry Perspectives on Some Auxetic Body-Bar Frameworks
نویسندگان
چکیده
Scalar mobility counting rules and their symmetry extensions are reviewed for finite frameworks and also for infinite periodic frameworks of the bar-and-joint, body-joint and body-bar types. A recently published symmetry criterion for the existence of equiauxetic character of an infinite framework is applied to two long known but apparently little studied hinged-hexagon frameworks, and is shown to detect auxetic behaviour in both. In contrast, for double-link frameworks based on triangular and square tessellations, other affine deformations can mix with the isotropic expansion mode.
منابع مشابه
When is a symmetric body-bar structure isostatic?
Body-bar frameworks provide a special class of frameworks which are well understood generically, with a full combinatorial theory for rigidity. Given a symmetric body-bar framework, this paper exploits group representation theory to provide necessary conditions for rigidity in the form of very simply stated restrictions on the numbers of those structural components that are unshifted by the sym...
متن کاملHow does symmetry impact the flexibility of proteins?
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes tha...
متن کاملInfinitesimal Rigidity of Symmetric Bar-Joint Frameworks
We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...
متن کاملFrameworks, Symmetry and Rigidity Supported by a London Mathematical Society Scheme 7 Grant
Symmetry equations are obtained for the rigidity matrix of a bar-joint framework in R d. This leads to a short proof of the Fowler-Guest symmetry group generalisation of the Calladine-Maxwell counting rules. Similar symmetry equations are obtained for the Jacobian of diverse framework systems, including the constrained point-line systems that appear in CAD, body-pin frameworks, and hybrid syste...
متن کاملOn the flexibility and symmetry of overconstrained mechanisms.
In kinematics, a framework is called overconstrained if its continuous flexibility is caused by particular dimensions; in the generic case, a framework of this type is rigid. Famous examples of overconstrained structures are the Bricard octahedra, the Bennett isogram, the Grünbaum framework, Bottema's 16-bar mechanism, Chasles' body-bar framework, Burmester's focal mechanism or flexible quad me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 6 شماره
صفحات -
تاریخ انتشار 2014